
1

The post-quantum Internet

Daniel J. Bernstein

University of Illinois at Chicago &

Technische Universiteit Eindhoven

Includes joint work with:

Tanja Lange

Technische Universiteit Eindhoven



2

IP: Internet Protocol

IP communicates “packets”:

limited-length byte strings.

Each computer on the Internet

has a 4-byte “IP address”.

e.g. www.pqcrypto.org has

address 131.155.70.11.

Your browser creates a packet

addressed to 131.155.70.11;

gives packet to the Internet.

Hopefully the Internet delivers

that packet to 131.155.70.11.



3

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”



3

DNS: Domain Name System

You actually told your browser to

connect to www.pqcrypto.org.

Browser learns “131.155.70.11”

by asking a name server,

the pqcrypto.org name server.

Browser → 131.155.71.143:

“Where is www.pqcrypto.org?”

IP packet from browser also

includes a return address:

the address of your computer.

131.155.71.143 → browser:

“131.155.70.11”



4

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”



4

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.



4

Browser learns the name-server

address, “131.155.71.143”,

by asking the .org name server.

Browser → 199.19.54.1:

“Where is www.pqcrypto.org?”

199.19.54.1 → browser:

“Ask the pqcrypto.org

name server, 131.155.71.143”

Browser learns “199.19.54.1”,

the .org server address,

by asking the root name server.

Browser learned root address

by consulting the Bible.



5

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)



5

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.



5

TCP: Transmission Control Protocol

Packets are limited to 1280 bytes.

(Actually depends on network.

Oldest IP standards required

≥576. Usually 1492 is safe,

often 1500, sometimes more.)

The page you’re downloading

from pqcrypto.org doesn’t fit.

Browser actually makes “TCP

connection” to pqcrypto.org.

Inside that connection: sends

HTTP request, receives response.



6

Browser → server:

“SYN 168bb5d9”

Server → browser:

“ACK 168bb5da, SYN 747bfa41”

Browser → server:

“ACK 747bfa42”

Server now allocates buffers

for this TCP connection.

Browser splits data into packets,

counting bytes from 168bb5da.

Server splits data into packets,

counting bytes from 747bfa42.



7

Main feature advertised by TCP:

“reliable data streams”.

Internet sometimes loses packets

or delivers packets out of order.

Doesn’t confuse TCP connections:

computer checks the counter

inside each TCP packet.

Computer retransmits data

if data is not acknowledged.

Complicated rules to decide

retransmission schedule,

avoiding network congestion.



8

Stream-level crypto

http://www.pqcrypto.org

uses HTTP over TCP.

https://www.pqcrypto.org

uses HTTP over TLS over TCP.

Your browser

• finds address 131.155.70.11;

• makes TCP connection;

• inside the TCP connection,

builds a TLS connection

by exchanging crypto keys;

• inside the TLS connection,

sends HTTP request etc.

http://www.pqcrypto.org
https://www.pqcrypto.org


9

What happens if attacker

forges a DNS packet

pointing to fake server?

Or a TCP packet

with bogus data?

DNS software is fooled.

TCP software is fooled.

TLS software sees that

something has gone wrong,

but has no way to recover.

Browser using TLS can

make a whole new connection,

but this is slow and fragile.

Huge damage from forged packet.



10

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.



10

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level crypto

works for more protocols

than stream-level crypto.



10

Modern trend (e.g., DNSCurve,

CurveCP; see also MinimaLT,

Google’s QUIC): Authenticate and

encrypt each packet separately.

Discard forged packet

immediately: no damage.

Retransmit packet if no

authenticated acknowledgment.

Engineering advantage:

Packet-level crypto

works for more protocols

than stream-level crypto.

Disadvantage:

Crypto must fit into packet.



11

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted

as me mod pq.



11

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted

as me mod pq.

“Hybrid” view of RSA,

including random padding:

Choose random AES-GCM key k.

Randomly pad k as r .

Encrypt r as r e mod pq.

Encrypt m under k .



11

The KEM+AE philosophy

Original view of RSA:

Message m is encrypted

as me mod pq.

“Hybrid” view of RSA,

including random padding:

Choose random AES-GCM key k.

Randomly pad k as r .

Encrypt r as r e mod pq.

Encrypt m under k .

Fragile, many problems:

e.g., Coppersmith attack,

Bleichenbacher attack,

bogus OAEP security proof.



12

Shoup’s “KEM+DEM” view:

“Key encapsulation mechanism”:

Choose random r mod pq.

Encrypt r as r e mod pq.

Define k = H(r; r e mod pq).

“Data encapsulation mechanism”:

Encrypt and authenticate

m under AES-GCM key k.

Authenticator catches

any modification of r e mod pq.

Much easier to get right.

Also generalizes nicely.

Can mix multiple hashes.



13

DEM security hypothesis:

weak single-message version

of security for secret-key

authenticated encryption.

Chou: Is it safe to reuse k

for multiple messages?

Answer: KEM+AE is safe;

KEM+AE ⇒ KEM+“nDEM”.

(But need literature on this!)

AES-GCM, Salsa20-Poly1305, etc.

aim for full AE security goal.

More complicated alternative:

Use KEM+DEM to encrypt an

n-time secret key m; reuse m.



14

DNSCurve: ECDH for DNS

Server knows ECDH secret key s.

Client knows ECDH secret key c ,

server’s public key S = sG.

Client → server:

packet containing cG; Ek (0; q)

where k = H(cS);

E is authenticated cipher;

q is DNS query.

Server → client:

packet containing Ek (1; r)

where r is DNS response.



15

Client can reuse c

across multiple queries,

but this leaks metadata.

Let’s assume one-time c .



15

Client can reuse c

across multiple queries,

but this leaks metadata.

Let’s assume one-time c .

KEM+AE view:

Client is sending k = H(cS)

encapsulated as cG.

This is an “ECDH KEM”.



15

Client can reuse c

across multiple queries,

but this leaks metadata.

Let’s assume one-time c .

KEM+AE view:

Client is sending k = H(cS)

encapsulated as cG.

This is an “ECDH KEM”.

Client then uses k

to authenticate+encrypt.

Server also uses k

to authenticate+encrypt.



16

Post-quantum encrypted DNS

“McEliece KEM”:

Client sends k = H(c; e; Sc + e)

encapsulated as Sc + e.

Random c ∈ F5413
2 ;

random small e ∈ F6960
2 ;

public key S ∈ F6960×5413
2 .



16

Post-quantum encrypted DNS

“McEliece KEM”:

Client sends k = H(c; e; Sc + e)

encapsulated as Sc + e.

Random c ∈ F5413
2 ;

random small e ∈ F6960
2 ;

public key S ∈ F6960×5413
2 .

S has secret Goppa structure

allowing server to decrypt.



16

Post-quantum encrypted DNS

“McEliece KEM”:

Client sends k = H(c; e; Sc + e)

encapsulated as Sc + e.

Random c ∈ F5413
2 ;

random small e ∈ F6960
2 ;

public key S ∈ F6960×5413
2 .

S has secret Goppa structure

allowing server to decrypt.

“Niederreiter KEM”, smaller:

Client sends k = H(e; S′e)

encapsulated as S′e ∈ F1547
2 .



17

Client → server:

packet containing Sc+e; Ek (0; q).

(Combine with ECDH KEM.)

Server → client:

packet containing Ek (1; r).



17

Client → server:

packet containing Sc+e; Ek (0; q).

(Combine with ECDH KEM.)

Server → client:

packet containing Ek (1; r).

r states a server address

and the server’s public key.

What if the key is too long

to fit into a single packet?

One simple answer:

Client separately requests

each block of public key.

Can do many requests in parallel.



18

Confidentiality:

Attacker can’t guess k ,

can’t decrypt Ek (0; q); Ek (1; r).

Integrity:

Server never signs anything,

but Ek includes authentication.

Attacker can send new queries

but can’t forge q or r .

Attacker can replay request.

Availability:

Client discards forgery,

continues waiting for reply,

eventually retransmits request.



19

Big keys

McEliece public key is 1MB

for long-term confidence today.

Is this size a problem?

Do we need to switch to

lower-confidence approaches

such as NTRU or QC-MDPC?

Size of average web page

in Alexa Top 1000000: 1.8MB.

Web page often needs

public keys for several servers,

but public key for a server

can be reused for many pages.



20

Most important limitation

on reuse of public keys:

switching to new keys

and promptly erasing old keys.

Rationale: “forward secrecy”—

subsequent theft of computer

doesn’t allow decryption.

e.g. Microsoft SChannel

switches keys every two hours.

Safer: new key every minute.

Easier to implement:

new key every connection.



21

What is the performance of

a new key every minute?

If server makes new key:

key gen, ≤1 per minute;

client encrypts to new key;

server decrypts.



21

What is the performance of

a new key every minute?

If server makes new key:

key gen, ≤1 per minute;

client encrypts to new key;

server decrypts.

If client makes new key:

client has key-gen cost;

server has encryption cost;

client has decryption cost.

Either way:

one key transmission for each

active client-server pair.



22

How does a stateless server

encrypt to a new client key

without storing the key?



22

How does a stateless server

encrypt to a new client key

without storing the key?

Slice McEliece public key

so that each slice of encryption

produces separate small output.

Client sends slices (in parallel),

receives outputs as cookies,

sends cookies (in parallel).

Server combines cookies.

Continue up through tree.

Server generates randomness

as secret function of key hash.

Statelessly verifies key hash.


