
Faster elliptic-curve discrete logarithms
on FPGAs

Daniel J. Bernstein1,2, Susanne Engels3, Tanja Lange2, Ruben Niederhagen2,
Christof Paar3, Peter Schwabe4, and Ralf Zimmermann3

1 Department of Computer Science
University of Illinois at Chicago, USA

djb@cr.yp.to
2 Department of Mathematics and Computer Science
Eindhoven University of Technology, The Netherlands

tanja@hyperelliptic.org, ruben@polycephaly.org
3 Horst Görtz Institute for IT-Security

Ruhr-University Bochum, Germany
susanne.engels@rub.de, christof.paar@rub.de, ralf.zimmermann@rub.de

4 Institute for Computing and Information Sciences
Radboud University, The Netherlands

peter@cryptojedi.org

Abstract. This paper accelerates FPGA computations of discrete loga-
rithms on elliptic curves over binary fields. As a toy example, this paper
successfully attacks the SECG standard curve sect113r2, a binary elliptic
curve that was not removed from the SECG standard until 2010 and was
not disabled in OpenSSL until June 2015. This is a new size record for
completed ECDL computations, using a prime order very slightly larger
than the previous record holder. More importantly, this paper uses FP-
GAs much more efficiently, saving a factor close to 3/2 in the size of
each high-speed ECDL core. This paper squeezes 3 cores into a low-cost
Spartan-6 FPGA and many more cores into larger FPGAs. The paper
also benchmarks many smaller-size attacks to demonstrate reliability of
the estimates, and covers a much larger curve over a 127-bit field to
demonstrate scalability.

Keywords: attacks, FPGAs, ECC, binary curves, Pollard rho, negation

1 Introduction

FPGAs are the most energy-efficient mass-market devices for computations of
discrete logarithms on elliptic curves defined over binary fields. For example, in

Public domain. This work was supported by NSF (U.S.) under grant 1018836;
by NWO (Netherlands) under grants 639.073.005, 613.001.011, and Veni 2013
project 13114; and by the European Commission through the ICT program un-
der contract INFSO-ICT-284833 (PUFFIN). Permanent ID of this document:
01ac92080664fb3a778a430e028e55c8. Date: 2016.08.06.

2 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

2009 a large cross-platform effort was initiated [1] to attack Certicom’s ECC2K-
130 challenge; an implementation optimized for a 300-watt NVIDIA GTX 295
GPU (dual 55nm GT200) performed 63 million iterations per second [3], while
an implementation of the same iteration function optimized for a 5-watt Xil-
inx XC3S5000 (90nm Spartan-3) FPGA performed 111 million iterations per
second [15], obviously much better performance.

An FPGA is a well-connected mesh of a large number of programmable
“lookup tables” (LUTs) surrounded by other useful resources such as “registers”.
For example, an XC3S5000 contains 74880 “LUT-4” units; each LUT-4 maps 4
input bits to 1 output bit. This paper focuses on newer Xilinx FPGAs with
larger “LUT-6” units, each mapping 6 input bits to 1 output bit: e.g.,

– a Xilinx XC6SLX150 (45nm Spartan-6, typically clocked at 100MHz) con-
tains 92152 LUT-6; and

– a Xilinx XC7K325T-2 (28nm Kintex-7, typically clocked at 180MHz) con-
tains 203800 LUT-6.

A modern high-end GPU is also highly parallel, with thousands of 32-bit arith-
metic units, but most of the operations provided by these units (e.g., floating-
point multiplication) are not helpful for binary-field arithmetic, and the remain-
ing operations (e.g., xor) are quite wasteful, spending most of their energy and
chip area on data transfer rather than computation. The LUTs in FPGAs handle
binary-field computations with much less overhead.

Recent binary-field elliptic-curve discrete-log work by Wenger and Wolfger
(see the preliminary SAC 2014 paper [31] and the final journal paper [32]) fits
5 cores onto an XC7K325T-2, using a total of 151 KLUTs, i.e., 30 KLUTs per
core. Each core runs at 180MHz and computes 1 iteration per cycle, so in total
the FPGA computes 900 million iterations per second. Wenger and Wolfger used
a cluster of ten KC705 development boards, each with an XC7K325T-2 FPGA,
for 2.5 months to successfully compute a discrete logarithm on an elliptic curve
defined over the field F2113 . The prime order here was slightly above 2112, not
much larger than the prime order from the previous ECDL record (approximately
2111.78; see [7] and [8]), but the previous ECDL record used PlayStations and
would have needed about 300 PlayStations to be completed in 2.5 months.

Wenger and Wolfger refer to several prior ECDL implementations on FPGAs
but claim in [32] that “none of their FPGA implementations have been success-
ful in solving ECDLPs”. This is contradicted by, e.g., [14, Section 5.4], which
reported “successfully” breaking a “target with a 60-bit ECDLP”; note that [14]
was cited as [32, reference 14]. It was already clear that FPGAs are very efficient
for this task; the remaining question is whether they can be sped up even more.

1.1. Primary contribution of this paper: more efficient ECDL cores.
In this paper we do better than [32] by a factor around 3/2: we squeeze ECDL
cores into just 21 KLUTs per core for the same field F2113 , while maintaining
high clock frequencies and maintaining a speed of 1 iteration per cycle on each
core. For example, we fit 6 cores into 126 KLUTs, 7 cores into 145 KLUTs, and 8
cores into 163 KLUTs. This speedup combines three directions of improvements:

Faster elliptic-curve discrete logarithms on FPGAs 3

– Smaller high-speed multipliers. Our F2113 multiplier takes just 3071 LUTs.
The multiplier in [32] takes 3757 LUTs, 22% larger.

– Fewer multipliers. For example, we use 16 multipliers for 3 cores and 32
multipliers for 6 cores, while the approach of [32] needs 15 multipliers for
just 2 cores and 30 multipliers for just 5 cores.

– Reduced area outside the multipliers. For example, we are the first to point
out that Tr(x) = 1 allows a new lower-area definition of |P |. The total
number of LUTs we use for the entire iteration function is only about 30%
more than the number used for the multiplications. For [32] the overhead is
around 50%.

We do not have access to any Kintex-7 FPGAs for testing, but we do have
access to low-cost Spartan-6 FPGAs. We fit 3 cores into just 64 KLUTs and
tested those cores at 100MHz on an XC6SLX150; this is a total of 300 million
iterations per second, achieving 1/3 the speed of [32] using an FPGA that costs
only 1/5 as much.

We estimate that scaling the design of [32] down to 1 core would make it
fit into an XC6SLX150 and would successfully run at 100MHz, but this would
compute only 100 million iterations per second. It is not at all clear that 2 cores
would fit: 15 multipliers at 3757 LUTs would already consume 56355 LUTs even
without counting overhead. It is clear that 3 cores would not fit. For our design 3
cores fit easily. On the more powerful Kintex-7 used in [32], we expect our 7-core
design to run stably at 180MHz, computing 1.26 billion iterations per second
on an XC7K325T-2, 40% faster than [32]. Our 8-core design also fits, and if it
runs stably at 180MHz then it is 60% faster than [32]. See Section 6.3 for a more
detailed stability analysis.

To put this 3/2 speedup into perspective, note that ECDL has for many years
been viewed as a highly optimized cryptanalytic computation, with very little
room for improvement. The number of iterations to compute an average ECDL
on a generic curve has for many years been asymptotically (1 + o(1))

√
π`/4,

where ` is the prime order. The last major improvement here was the nega-
tion map, which has been the topic of several ECDL papers and saved only√

2 − o(1) < 1.5. The amount of arithmetic per iteration has for many years
been asymptotically the cost of 5+o(1) binary-polynomial multiplications.5 The
remaining questions are how much the o(1) overheads can be reduced and how
efficiently the multiplications can be carried out in a given amount of hardware.

See Sections 3 and 4 for further details of our design, and Section 6 for
analysis of how our results improve upon the results of [32].

5 Each inversion costs 3+o(1) multiplications by Montgomery’s trick, so each division
costs 4+o(1) multiplications. The resulting λ is used in 1 multiplication. The squaring
of λ costs asymptotically only as much as o(1) multiplications since we are using a
binary field, and similar comments apply to additions, reductions, comparisons, etc.,
for a total of 5 + o(1) multiplications.

We point out that this well-known 5 + o(1) can be improved to 4.5 + o(1) as
follows. Choose the ith table entry Ri to have x-coordinate matching the bits of i at
the positions that are used to select i. This forces each denominator x1 + x2 used in
λ to have bits 0 in all of those positions. Use a precomputed table of maximum size

4 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

1.2. Secondary contribution of this paper: a new ECDL record. The
curve sect113r2 was standardized by SECG (Standards for Efficient Cryptog-
raphy Group) in version 1.0 of “SEC 2: Recommended Elliptic Curve Domain
Parameters” [10] in 2000, and was included as one of the supported curves when
OpenSSL added ECC support in 2005 (version 0.9.8). This curve is defined over
F2113 ; see Section 2 for further details of the curve.

This curve disappeared from version 2.0 of the SEC 2 standard [11] in 2010
(along with all other curves over field sizes below ≈2192 for odd characteristic
and 2163 for even characteristic), and disappeared from OpenSSL’s default curve
list in June 2015 (version 1.0.2b). However, most installations are running older
versions of OpenSSL that still support this curve. It is easy to imagine how
an OpenSSL user seeking to minimize bandwidth for ECC would look through
the output of openssl ecparam -list_curves and find this curve as one of the
lowest-bandwidth options.

We used 120 XC6SLX150 FPGAs to successfully compute an ECDL of a
random target point on sect113r2. This computation was slower than desired for
three reasons: first, it used a preliminary 2-core version of our implementation;
second, not all of the FPGAs were available all of the time; third, the number of
iterations in these ECDL algorithms is a random variable with high variance, and
we were moderately unlucky in the number of iterations used for this particular
computation. The computation nevertheless finished in under 2 months.

Technically, this is a new ECDL record, since the prime order is (marginally)
larger than the prime order in [32]. We do not mean to exaggerate the importance
of setting ECDL size records; obviously such records are heavily influenced by
hardware availability, obscuring the impact of algorithmic improvements and
understating the amount of hardware actually available to attackers. We also do
not mean to exaggerate the importance of this curve: the curve is toy crypto
that should never have been standardized. We do not know how many people
have actually used sect113r2 to encrypt data. What really matters in this paper
is being able to squeeze iterations into fewer LUTs (see Section 1.1), reducing
costs not merely for this attack but also for much larger attacks against much
larger curves.

1.3. Variations and extrapolations. The extrapolations in [32, Section 7.1
and Table 4] assume that the number of FPGA-years scales as a simple square
root of the prime order. This assumption means, for example, that the NIST B-
163 prime order (almost exactly 2162) costs 225 times as many FPGA-years as the
sect113r1 and sect113r2 prime orders (almost exactly 2112). The extrapolations
also assume a

√
163 speedup for the Koblitz curve NIST K-163.

However, an accurate cost analysis is more complicated. Many components of
an ECDL core grow linearly with the number of bits in the field. Even worse, the

`0.5−o(1), so that each denominator has only (0.5 + o(1)) log2 ` bits. This reduces the
cost of denominator multiplication by a factor 2 + o(1).

Unfortunately, this asymptotic improvement in the amount of arithmetic costs
too much area to be useful in a more sophisticated cost metric. See later for details
of our table usage and of how we merge point doublings with point additions.

Faster elliptic-curve discrete logarithms on FPGAs 5

area for a high-speed multiplier grows superlinearly. There is also a noticeable
extra reduction cost for fields defined by pentanomials rather than trinomials,
such as F2163 . Scaling to larger and larger fields will eventually force any partic-
ular size of FPGA to use fewer and fewer high-speed cores.

We scaled our design from a 113-bit field up to a 127-bit field, carefully reopti-
mizing our Karatsuba-based arithmetic. This expanded 3 cores from 64401 LUTs
to 74095 LUTs. We tested that this 3-core design still fits onto an XC6SLX150
and runs successfully at 100MHz. We are now running this design on 128 of these
FPGAs to compute an ECDL on a curve over F2127 in a subgroup of prime order
approximately 2117.35; this is expected to take only 123 days. For comparison, as
noted above, it is not at all clear that 2 of the 113-bit cores from [32] would fit
onto this FPGA, and it seems quite unlikely that 2 similar 127-bit cores would
fit.

The bigger picture is that attacks at interesting sizes should be less expensive
than predicted in [32]. The caveat that cores grow with field size is outweighed
by our 3/2 improvement considerably beyond 127 bits. Furthermore, given the
agility of FPGAs to promptly and cost-effectively tackle new problems, any
serious attacker should be expected to be operating a large FPGA cluster; and,
given economies of scale, the cost per FPGA in a large cluster should be expected
to be much lower than indicated in [32, Table 4]. We do not agree, for example,
that a 5-million-FPGA cluster for breaking NIST K-163 in a year would cost
10 ·109 USD, an entire year of NSA’s budget. A more plausible estimate is under
2 · 109 USD, similar in cost (and power consumption) to one of NSA’s existing
data centers.

A well-funded attacker facing years of predictable large-scale computations
will do even better by building application-specific integrated circuits (ASICs).
FPGA optimization techniques are well known to be much better than CPU (and
GPU) optimization techniques as a predictor of ASIC optimization techniques.
Our multiplier details should be reoptimized for ASICs but we expect the overall
architecture to perform very well.

1.4. Attacking many targets. We use Q-independent walks (see Section 3),
so distinguished points collected in solving one ECDL help solve the next ECDL
more quickly. It is well known that this trick breaks K keys at cost only about√
K times as much as breaking one key; see [21], [20], and [4].

For example, a cluster breaking K-163 in one year would be expected to break
approximately 25 keys, not just 5 keys, in 5 years. This makes a large ECDL
cluster more attractive for the attacker, and more damaging for the users. Fur-
thermore, our 3/2 speedup in finding distinguished points (for the same hardware
cost) actually means that we can break more than twice as many keys in the
same amount of time.

1.5. Binary fields vs. prime fields. The standard NIST curves fall into three
different categories: Koblitz curves over binary fields F2n , “random” curves over
binary fields F2n , and “random” curves over prime fields Fp. There are five NIST
curves in each category, spread across five different sizes of 2n or p. The smallest
2n is 2163, while the smallest p is approximately 2192. See [22] and [23].

6 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

It is easy to see how an ASIC designer concerned with the costs of an ECC
coprocessor (chip area, power, energy, etc.) for constructive use will end up
choosing F2163 . Taking a binary field rather than a prime field eliminates all
the circuitry for carries, and taking the smallest allowable field has obvious
performance benefits. It is not as clear whether the designer will prefer a Koblitz
curve or a “random” curve: the extra endomorphisms in Koblitz curves reduce
the number of field multiplications inside scalar multiplication, saving energy,
but managing these endomorphisms comes at a cost in chip area.

There are several common arguments that prime fields should be preferred,
but it is also easy to imagine counterarguments from the ASIC designer:

– Prime fields provide better software performance, since they take better ad-
vantage of the integer multipliers provided by CPUs. Counterarguments:
CPUs evolve to meet the needs of applications, and Intel’s new PCLMULQDQ
instruction already provides excellent performance for curves over binary
fields; see [25]. Software performance is ultimately less important than hard-
ware performance.

– Prime fields are the safest choice, since binary fields have extra structure
that might be exploitable. Some papers have suggested the possibility of an
asymptotically subexponential ECDL algorithm for curves over F2n . Coun-
terarguments: Other papers have disputed this possibility; see [17, Section
10.2] for a recent overview and references. None of the papers have claimed
relevance to the range of n actually used in ECC. Speculations about secu-
rity problems are less important than meeting the performance requirements
of the applications.

– For Koblitz curves there are extra endomorphisms that speed up known
attacks by a factor close to

√
n. See [33] and [18]. Counterarguments: This

speedup does not apply to “random” curves, and
√
n is a limited factor in

any case.

– Some ECC standards require prime fields: consider, e.g., NSA’s Suite B [24]
and the Brainpool standard [13], both from 2005. Counterargument: Those
standards do not articulate reasons to avoid binary fields: e.g., [13] says that
subsequent editions “may also contain elliptic curves over fields of charac-
teristic 2”.

In this paper we do not take a position in this debate. We merely observe that the
performance of binary-field ECC continues to attract attention, so the commu-
nity also needs to understand the cost of solving binary-field ECDLP. Standard
extrapolations (see above) suggest that breaking a “random” curve over F2163 is
an order of magnitude more expensive than breaking a Koblitz curve over F2163 ,
which in turn is millions of times more expensive than breaking a random curve
over F2113 ; but these are not infeasible computations, and a 3/2 speedup has
a huge impact at this scale. Some of our area-optimization techniques are also
applicable to prime-field ECDLP, although obviously the details of arithmetic
will be different.

Faster elliptic-curve discrete logarithms on FPGAs 7

1.6. Acknowledgements. The authors would like to thank Bo-Yin Yang of
Academia Sinica for providing access to his FPGA clusters for all computations
and to SciEngines for doing computations on their clusters for the 117-bit DLP.

2 Two target curves: sect113r2 and target117

This section describes two sample curves where we are performing computa-
tions. The first curve, sect113r2, is from the SECG standard. The second curve,
target117, is a larger non-standard curve that we define here. This section also
includes trace calculations that we exploit later.

Our successful ECDL computation on sect113r2 means that both of the
curves standardized by SECG over F2113 have been broken. The next SECG
binary field is F2131 , skipping F2127 . We decided to create target117 as an inter-
mediate target over F2127 .

2.1. Arithmetic on binary elliptic curves. For efficiency, curves over binary
fields F2n are usually chosen to be of the form y2 + xy = x3 + x2 + b. Addition
of two points (x1, y1) and (x2, y2) on this curve produces a result (x3, y3) with

(x3, y3) = (λ2 + λ+ 1 + x1 + x2, λ(x1 + x3) + y1 + x3), where

λ =

{
(x21 + y1)/x1 if P1 = P2 6= −P2

(y1 + y2)/(x1 + x2) if P1 6= ±P2
.

The negative of a point is −(x1, y1) = (x1, y1 +x1) and (x1, y1) + (x1, y1 +x1) =
∞.

All curves of the form y2+xy = x3+x2+b have a co-factor of 2, with (0,
√
b)

being a point of order 2. Varying b varies the group order but the term x2 means
that there is no point of order 4. Essentially all integer orders within the Hasse
interval [2n + 1 − 2 · 2n/2, 2n + 1 + 2 · 2n/2] that are congruent to 2 modulo 4
are attainable by changing b within F2n . We use this to generate further elliptic
curves with points of medium prime order for testing purposes.

2.2. The first target curve: sect113r2. The SECG curve sect113r2 is defined
over F2113

∼= F2[w]/(w113 + w9 + 1) by an equation of the form E : y2 + xy =
x3 + ax2 + b and basepoint P = (xP , yP), where

a = 0x0689918DBEC7E5A0DD6DFC0AA55C7,

b = 0x095E9A9EC9B297BD4BF36E059184F,

xP = 0x1A57A6A7B26CA5EF52FCDB8164797, and

yP = 0x0B3ADC94ED1FE674C06E695BABA1D,

using hexadecimal representation for elements of F2113 , i.e., taking the coefficients
in the binary representation of the integer as coefficients of the powers of w,
with the least significant bit corresponding to the power of w0. The order of P is
5192296858534827702972497909952403, which is prime. The order of the curve
|E(F2113)| is twice as large.

8 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

It is possible to transform the elliptic curve to isomorphic ones by maps of
the form x′ = c2x+ u, y′ = c3y+ dx+ v. These maps do not change the general
shape of the curve (the highest terms are still y2, x3, and xy) but allow mapping
to the more efficient representation given above. The security among isomorphic
curves is identical: the DLP can be transformed using the same equations. Curve
arithmetic depends on the value of a and for fields of odd extension degree it is
always possible to find an isomorphic curve with a ∈ {0, 1}. It is unclear why this
optimization was not applied in SECG but we will use it in the cryptanalysis.

For sect113r2 we have Tr(a) = 1 so there is an element t ∈ F2113 satisfying
t2 + t + a + 1 = 0. Now (xP , yP + txP) is on y2 + xy = x3 + x2 + b for every
(xP , yP) on E because

(yP + txP)2 + xP (yP + txP) = y2P + xP yP + (t2x2P + tx2P)

= x3P + ax2P + b+ (t2 + t)x2P = x3P + x2P + b.

The specific value for t is given in Appendix A. The base point is transformed
to (xP , y

′
P) with

y′P = 0x17D5618CD2EE81F84FAB74B1EB19F.

2.3. The second target curve: target117. This curve is defined over F2127
∼=

F2[w]/(w127 +w+ 1) by an equation of the form E : y2 + xy = x3 + ax2 + b and
base point P = (xP , yP), where

a = 0x00000000000000000000000000000001,

b = 0x000000000000000000000000000001AB,

xP = 0x3CF9CCD146B5E7440E9632F5D2B49679, and

yP = 0x43ED94FD97454C8197B6207C9A23C67E.

The order of P is 212146114040485326348618959071598183 ≈ 2117.35 which is
prime. The order of the curve |E(F2127)| is 802 times larger.

2.4. Trace calculations. Finite fields of characteristic 2 are usually defined
using an irreducible polynomial f ∈ F2[w]. For our fields, f − 1 is an odd poly-
nomial (i.e., f − 1 = wg(w2) for some polynomial g), and we can prove some
properties about the trace of elements.

Theorem 2.1. Let n be an odd positive integer. Let f1, f3, . . . , fn−2 be elements
of F2. Define f = 1 + f1w + f3w

3 + · · ·+ fn−2w
n−2 +wn ∈ F2[w]. Assume that

f is irreducible. Define α as the image of w in the finite field F2[w]/(f). Then
Tr(αi) = 0 for 1 ≤ i < n.

Proof. We start with Newton’s identities expressed as the concise equation

f ′

f
=
∑
i≥0

Tr(αi)εi+1

Faster elliptic-curve discrete logarithms on FPGAs 9

in the field F2((ε)) of Laurent series, where f ′ is the derivative of f and ε = 1/w.
For a proof see, e.g., [2].

We will show explicitly that f ′/f ∈ ε− εn+1 +O(εn+2), where O(εk) means
the set of series of the form skε

k + sk+1ε
k+1 + · · · . We then simply read off

Tr(α),Tr(α2), . . . ,Tr(αn−1) as the coefficients of ε2, ε3, . . . , εn respectively in
f ′/f : all of these coefficients are 0 as claimed.

The hypothesis f = 1 + f1w + f3w
3 + · · · + fn−2w

n−2 + wn implies f ′ =
f1+f3w

2+· · ·+fn−2wn−3+wn−1 = ε(f−1), i.e., f ′/f = ε(1−1/f). We will show
that 1/f ∈ εn+O(εn+1), so 1−1/f ∈ 1−εn+O(εn+1), so f ′/f ∈ ε−εn+1+O(εn+2)
as claimed.

The same hypothesis implies εnf = εn +f1ε
n−1 +f3ε

n−3 + · · ·+fn−2ε
2 + 1 ∈

1 + O(ε). Anything in 1 + O(ε) also has reciprocal in 1 + O(ε): one standard
proof uses the Taylor series for 1/(1 + z), and another uses the ε valuation.
Hence 1/(εnf) ∈ 1 +O(ε), i.e., 1/f ∈ εn +O(εn+1) as claimed. ut

If n is odd and xn+xm+1 is irreducible then xn+xn−m+1 is also irreducible.
One of these two trinomials f meets the requirement of Theorem 2.1 that f − 1
be odd. Not every n has an irreducible trinomial, but it is generally believed
that each n ≥ 4 has an irreducible pentanomial, and it seems that for each odd
n ≥ 7 there is an irreducible degree-n pentanomial f such that f − 1 is odd.

2.5. Traces of x-coordinates. Cryptographic applications work in a subgroup
of prime order. Because this order ` is odd, 2 is invertible modulo `, so there
exists an s with 2s ≡ 1 mod `. This means that each point R in this subgroup of
prime order is the double of sR, because 2sR = R. Seroussi showed in [27] that
on y2 + xy = x3 + ax2 + b for any point (x, y) that is the double of any point it
holds that Tr(x) = Tr(a).

For both fields F2n considered here, i.e. F2113
∼= F2[w]/(w113 + w9 + 1) and

F2127
∼= F2[w]/(w127 +w+ 1), we have just shown that Tr(wi) = 0 for 1 ≤ i < n

and, of course, Tr(1) = 1. If x =
∑n−1

i=0 xiw
i then Tr(x) =

∑n−1
i=0 xiTr(wi) = x0

since the trace is additive. This implies that for our curves having a = 1, each
point in the subgroup of order ` has x0 = Tr(x) = Tr(a) = 1, i.e., the least
significant bit in the representation of x is 1.

3 Pollard iterations

Our attack uses the parallel version of Pollard’s rho algorithm [26] by van
Oorschot and Wiener [30] to compute the discrete logarithm of Q to the base P .
This algorithm works in a client-server approach.

Each client (in our case each FPGA process) receives as input a point R0

which is a known linear combination of P and Q, i.e., R0 = a0P + b0Q. From
this input point it starts a pseudorandom walk, where each step depends only on
the coordinates of the current point Ri and preserves knowledge of coefficients
ai, bi such that Ri = aiP + biQ. The walk ends when it reaches a so-called
“distinguished point” Rd, where the property of being distinguished is a property

10 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

of the coordinates of the point. This distinguished point is then reported to a
server together with information that allows the server to obtain ad and bd.

The server searches through incoming points until it finds a collision, i.e.,
two walks that ended up in distinguished points Rd1 = ad1P + bd1Q and Rd2 =
ad2

P + bd2
Q that are equal. With very high probability, the coefficients bd1

and bd2
are distinct modulo `, so we can compute the discrete logarithm as

logP Q ≡ (ad1
− ad2

)/(bd2
− bd1

) mod `.
In the following, we describe the construction of our iteration function. We

start with a simple version, which does not make use of the negation map, and
then modify this walk to perform iterations modulo negation.

3.1. Non-negating walk. Our iteration function follows the standard approach
of an additive walk (see e.g. [29]) with some improvements following [6]. We
precompute a table (T0, . . . , Tn−1) of random multiples of the base point P ;
our implementation uses n = 1024. Older descriptions often define steps to be
combinations of P and Q, but Q is a multiple of P itself, so taking random
multiples of P has the same effect and makes the step function independent of
the target discrete logarithm. This means the design including the precomputed
points can be synthesized for the FPGA and then used to break multiple discrete
logarithms. We use a random multiple of the target point Q for the starting
point R0 of a random walk. Our iteration function f is defined as

Ri+1 = f(Ri) = Ri + TI(Ri),

where I(Ri) takes the coefficients of w10, w9, . . . , w1 of the x-coordinate of Ri,
interpreted as an integer. We ignored the coefficient of w0 because it is 1 for all
points (see Section 2) and chose the next 10 least significant bits in order to avoid
overlap with the distinguished-point property defined in the next paragraph.

After each iteration, we check whether we have reached a distinguished
point. We call a point distinguished when the 30 most significant bits of the
x-coordinate are zero. If the point is a distinguished point, it is output, other-
wise the iteration proceeds.

In the literature, there are two different approaches of how to continue after
a distinguished point has been found. The traditional approach is to report the
point and the linear combination leading to it and then to simply continue with
the random walk. This approach has been used, for example, in [19], [7], [8], [31],
and [32]. The disadvantage of this approach is that the iteration function needs
to update the coefficients of the linear combination of P and Q (at least the
coefficient of P , and also the coefficient of Q with older definitions of steps); in
our case this would mean that the FPGAs not only have to perform arithmetic
in F2113 but also big-integer arithmetic modulo the 113-bit group order `.

A more efficient approach was suggested in [1] and [6]. Once a distinguished
point has been found the walk stops and reports the point. The processor then
starts with a fresh input point. This means that all walks have about the same
length, in this case about 230 steps. The walks do not compute the counters for
the multiples of P and Q; instead they remember the initial multiple of Q in
the form of a seed. The server stores this seed and the resulting distinguished

Faster elliptic-curve discrete logarithms on FPGAs 11

point. Once a collision between distinguished points has been found, we simply
recompute the two colliding walks and this time compute the multiples of P .
We wrote a non-optimized software implementation based on NTL for this task,
which took time on the scale of an hour to recompute the length-230 walks and
solve the DLP on sect113r2.

3.2. Walks modulo negation. Like [32] and various earlier papers, we reduce
the expected number of iterations for an ECDL computation by computing itera-
tions modulo the efficiently computable negation map. This improvement halves
the search space of Pollard rho and thus gives a theoretic speedup of

√
2. The use

of the negation map has been an issue of debate: see [9] for arguments against
and [6] for an implementation that achieves essentially the predicted speedup.

Changing the walk to work modulo the negation map requires two changes.
First, we have to map {P,−P} to a well-defined representative. We denote this
representative |P |. Recall that the least significant bit of x is always 1 (see the
trace discussion at the end of Section 2) and that −(x, y) = (x, x+ y). We pick
the point that has the least significant bit of y being 0 as representative. After
each step of the iteration function we inspect the y-coordinate of the reached
point Ri and continue with −Ri in case the least significant bit of y is 1. This
requires one bit comparison and one field addition.

The traditional approach would instead be to take whichever of Ri and −Ri

has a lexicographically smaller y-coordinate. Our approach, relying on the x0 = 1
observation, replaces a lexicographic comparison with a single bit comparison,
noticeably reducing area overhead.

Second, we need a mechanism to escape so-called fruitless cycles. These mini-
cycles stem from the combination of additive walks and walks defined modulo
negation. The most basic and most frequent case of a fruitless cycle is a 2-cycle.
Such a cycle occurs whenever I(Ri) = I(Ri+1) and Ri+1 = |(Ri + TI(Ri))| =
−(Ri + TI(Ri)). In this case, Ri+2 is again Ri and the walk is caught in a cycle
consisting of Ri and Ri+1. The probability of this to occur is 1/(2n), where n
is the number of precomputed points. There also exist larger fruitless cycles of
lengths 4, 6, 8 etc., but the frequency of those is much lower. See Appendix B.

Bernstein, Lange and Schwabe suggest in [6] detecting fruitless cycles by
checking frequently for cycles of length 2 and increasingly less frequently for
cycles of higher length. However, they are using a vectorized software imple-
mentation where frequent checks for cycles are expensive. We are using an un-
rolled hardware design; checking for cycles has no impact on the computational
throughput and only a small impact on area demand. Also, cycle checking can
be done individually for each independent walk in the pipeline without impact
on the other walks (in contrast to a vectorized implementation where the same
operation must be applied jointly to all walks in the data vectors).

We use a simple 4-bit counter, allowing us to detect all cycles of length up
to 16. This prevents practically all infinite loops during the computation: fruit-
less cycles of length 10, 12, 14 have probabilities approximately 2−47.1, 2−54.5,
2−61.8 respectively (see Appendix B), and fruitless cycles of length ≥16 are ex-
tremely unlikely. Once a cycle is detected, a deterministic way of leaving the

12 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

cycle is required regardless of where the cycle was entered; two independent
walks that enter the same cycle at a different entry point must leave the cycle
at the same point in order to eventually end in the same distinguished point.
Therefore, we record the current minimum x-coordinate in the 16-step cycle-
detection window. Whenever we reach a point with a smaller x-coordinate than
the current minimum, the cycle counter is reset and the minimum x-coordinate
is updated. When we reach the same point, i.e. the same x-coordinate as the
stored minimum (given that we are using the negation map we do not need to
compare the y-coordinate), then we are in a cycle and have to escape the cycle
by doubling the current point. If the counter has an overflow to 0, i.e., we did
not encounter a cycle in the last 16 steps, the current minimum is reset to the
current x-coordinate and the cycle-detection is restarted.

We use the same criterion for a distinguished point (30 zeros) and the same
table of precomputed steps as described in the previous subsection.

3.3. Justification of distinguished-point property. For the sect113r2 curve
the expected number of group operations is roughly 256. Each walk takes about
230 steps to reach a distinguished point and so we expect about 226 distinguished
points before we find a collision. This amount of data poses no problem for the
host PC and for the I/O part of the hardware. The same criterion is also a
good choice for the target117 curve which then requires about 228 distinguished
points. For even larger DL computations a less frequent property needs to be
chosen. A benefit of relatively short walks is that they are easily recomputed on
a PC, which we use for finding the DL after a collision of distinguished points
occurs. This also helped in verifying that the FPGA code computed the same
walks as a software implementation.

4 Implementation

The main core of the iteration function is a point addition, either the addition
of the current state point with a point from the precomputed table or in case a
cycle was detected the doubling of the current state point.

Doubling of a point is quite similar to addition of two distinct points (see
Section 2 for the standard addition formula) but removes one finite-field addition
and includes one extra finite-field squaring. This can easily be expressed using
conditional assignments. Figure 4.1 shows Sage code for the iteration function;
the point addition/doubling part is in lines 3 to 16. The code doubles the current
state point (x, y) in case the double flag is true or adds a point T = (Tx, Ty)
from a precomputed table (depending on some bits of the current x-coordinate).
The current state point is updated unless a distinguished point has been reached
(check_dist returns true if (x, y) is a distinguished point). Lines 15 and 16 im-
plement the negation map using a conditional assignment: if the least significant
bit of y is 1, the current point is replaced with −(x, y) = (x, x+ y).

The Sage code for cycle detection is shown in lines 19 to 25 in Figure 4.1.
The variable ctr is a 4-bit counter. To compute the potential exit point of a cyle,
we store the x-coordinate of the minimum point (i.e., the point with the smallest

Faster elliptic-curve discrete logarithms on FPGAs 13

1 de f random_step (x , y , ctr , double , x_min) :
2 # point add i t i on / doubl ing
3 T_x = get_precomputed_x (x)
4 l 1 = x i f double e l s e (x + T_x)
5 l1_inv = 1/ l 1
6 T_y = get_precomputed_y (x)
7 l 0 = (x^2 + y) i f double e l s e (y + T_y)
8 l = l 0 ∗ l1_inv
9 x3 = l ^2 + l + 1

10 x3 = x3 i f double e l s e x3 + l1
11 d i s t = check_dist (x)
12 tmp = l ∗ (x + x3)
13 x = x i f d i s t e l s e x3
14 y = y i f d i s t e l s e tmp + y + x3
15 c_x_y = (get_lsb (y) == 1)
16 y = (x + y) i f c_x_y e l s e y
17
18 # cyc l e d e t e c t i on
19 c t r = (c t r + 1) % 16
20 c_ctr = (c t r == 0)
21 c_lt = (x < x_min)
22 c_new_min = c_lt or c_ctr or double
23 double = (x == x_min)
24 x_min = x i f c_new_min e l s e x_min
25 c t r = 0 i f c_lt e l s e c t r
26 re turn (x , y , ctr , double , x_min)

Fig. 4.1: Sage code for the iteration function.

x-coordinate) of a cycle in x_min. Whenever within 16 steps we reach a smaller
point than the current minimum, the flag c_lt is set to true, x_min is updated,
and the counter value is reset to 0. A side effect of using the negation map is
that we do not need to store the y-coordinate of the minimum point. In case
the counter has an overflow to 0, i.e., we did not encounter a cycle within 16
iteration steps, the flag c_ctr is set to true and we move the detection window
forward by setting the minimum x_min to the current point. In case we re-visit
a point, i.e., the current x-coordinate is equal to x_min, the flag double is set
to true for the next iteration resulting in a point doubling in the top part of the
code in Figure 4.1. If there just was a point doubling in the current iteration,
x_min is updated with the current x-coordinate as well in order to restart cycle
detection.

The state of the iteration function consists of the x and y coordinates of the
current point. For cycle detection, additionally we require a 4-bit counter, the
flag double, and the x-coordinate of the minimum point of the cycle window.
For computations in F2n , in total the state requires 2n+ 4 + 1 +n bits, therefore
344 bits for sect113r2 using F2113 and 386 bits for target117 using F2127 .

14 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

1 de f GF113_inv (x) :
2 r0 = x^(2^1)
3 r1 = r0 ∗x
4 r0 = r1 ^(2^1)
5 r1 = r0 ∗x
6 r0 = r1 ^(2^3)
7 r1 = r0 ∗ r1
8 r0 = r1 ^(2^1)
9 r1 = r0 ∗x

10 r0 = r1 ^(2^7)
11 r1 = r0 ∗ r1
12 r0 = r1 ^(2^14)
13 r1 = r0 ∗ r1
14 r0 = r1 ^(2^28)
15 r1 = r0 ∗ r1
16 r0 = r1 ^(2^56)
17 r1 = r0 ∗ r1
18 r0 = r1 ^(2^1)
19 re turn r0

1 de f GF127_inv (x) :
2 r0 = x^(2^1)
3 r0 = r0 ∗x
4 r0 = r0 ^(2^1)
5 r2 = r0 ∗x
6 r0 = r2 ^(2^3)
7 r1 = r0 ∗ r2
8 r0 = r1 ^(2^6)
9 r1 = r0 ∗ r1

10 r0 = r1 ^(2^3)
11 r1 = r0 ∗ r2
12 r0 = r1 ^(2^15)
13 r1 = r0 ∗ r1
14 r0 = r1 ^(2^30)
15 r1 = r0 ∗ r1
16 r0 = r1 ^(2^3)
17 r1 = r0 ∗ r2
18 r0 = r1 ^(2^63)
19 r1 = r0 ∗ r1
20 r0 = r1 ^(2^1)
21 re turn r0

Fig. 4.2: Sage code for finite-field inversion in F2113 and F2127 .

The functional description of the iteration function shows that we need sev-
eral finite-field operations for the FPGA design, i.e., addition, squaring, multi-
plication, inversion, and comparison.

4.1. Inversion. Inversion in the finite field is an expensive operation that can
be implemented using a sequence of squarings and multiplications to compute
a−1 = a2

n−2. Figure 4.2 shows the inversion ladders that we are using. The
shortest addition chain for 112 requires 8 additions, the chain for 126 requires
9 additions [16]. This allows us to compute short addition chains for 2113−2 and
2127 − 2. The inversion procedures require 8 multiplications and 112 squarings
for F2113 , 9 multiplications and 126 squarings for F2127 .

Consecutive squarings can be combined to powers of higher order depending
on which power is suitable and most efficient for the implementation.

4.2. Low level functions. The main components for implementing logical ex-
pressions on an FPGA are lookup tables (LUTs). The LUTs in the Spartan-6
are LUT-6 with 6 input wires. However, internally each LUT-6 is implemented
with two LUT-5 using the same input wires. The sixth input wire selects the
final output by controlling a 2-bit multiplexer (see Figure 4.3). The LUTs can
be configured either as LUT_6 providing LUT-6 functionality or as LUT_6_2
that gives access to each output of the two LUT-5.

4.3. Addition. This operation requires a very small amount of logic. dk/2e
LUTs in LUT_6_2 configuration (providing ≥ k output bits) are sufficient

Faster elliptic-curve discrete logarithms on FPGAs 15

LUT5

LUT5

LUT6

5-0
4-0

4-0

5

I

O5

O6

M
U

X

Fig. 4.3: Structure of a LUT-6 implemented as two LUT-5. Input I is a 6-bit bus.
Output O5 is available when used as LUT_6_2.

for the implementation. However, often addition can be combined with follow-
up operations like squaring such that the logic might be absorbed. We do not
explicitly implement addition with LUT_6_2 components but leave it to the
Xilinx tool chain to map the VHDL code.

4.4. Squaring. This operation requires simply inserting zeros between the co-
efficients and performing a reduction modulo the irreducible polynomial chosen
for the respective field (which is a trinomial for both our targets). Consecu-
tive squarings can be combined in order to absorb logic into a smaller number
of LUTs. Single squarings appear in combination with addition in our design.
Therefore, we express single squarings as VHDL code and leave it to the Xilinx
tool chain to combine the logic. For sequences from 2 to 8 squarings, we generate
optimized logic and explicitly use LUT_6_2 components.

4.5. Multiplication. This operation is the most expensive operation in terms
of area. We use three levels of Karatsuba multiplication for both fields. Since
we are operating on operands with a prime number of bits, we cannot apply
Karatsuba straight away. For operations in F2113 , we handle the top bits of the
operands separately and perform Karatsuba on 112-bit operands, resulting in 27
multiplications of 14-bit polynomials. For operations in F2127 , we simply add a
zero bit as most significant bit to each operand and perform 27 multiplications
of 16-bit polynomials at the cost of a small overhead.

For the low-level multiplications, we generate optimized logic using LUT_6_2
components. Figure 4.4 shows an example of how we cover the terms; adding up
the columns in the figure gives the result of a 7 × 7 polynomial multiplication.
Using a LUT-6 as in the dashed box covers only three terms using 6 inputs; us-
ing a LUT_6_2 as in the solid box requires only five separate inputs but covers
4 terms, the two output wires of the LUT_6_2 are used for the two involved
columns (requiring independent sums). Special care needs to be taken at the
boundaries. Additional logic is required to sum up over each column.

16 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

a0b0a0b1a0b2a0b3a0b4a0b5a0b6

a1b0a1b1
+

a1b2
+

a1b3
+

a1b4
+

a1b5
+

a1b6
+

a2b0a2b1
+

a2b2
+

a2b3
+

a2b4
+

a2b5
+

a2b6
+

a3b0a3b1
+

a3b2
+

a3b3
+

a3b4
+

a3b5
+

a3b6
+

a4b0a4b1
+

a4b2
+

a4b3
+

a4b4
+

a4b5
+

a4b6
+

a5b0a5b1
+

a5b2
+

a5b3
+

a5b4
+

a5b5
+

a5b6
+

a6b0a6b1
+

a6b2
+

a6b3
+

a6b4
+

a6b5
+

a6b6
+

Fig. 4.4: Example for assigning terms of a 7 × 7 polynomial multiplication to
LUT-6’s. The dashed box requires six inputs but covers only three terms. The
solid box requires only five inputs for four terms and thus can be implemented
using a LUT_6_2.

Also for the preparation of the inputs for the low-level multiplications and
for the computation of the total result we are generating optimized logic using
LUT_6_2 components whenever possible. All in all, one F2113 × F2113 multipli-
cation requires on average 3071 LUTs and one F2127 × F2127 multiplication on
average 3620 LUTs (after placement and routing). The implementation of the
multiplication is pipelined and requires three clock cycles.

4.6. Comparison. For cycle detection we require a less-than comparison and an
equality check on the same inputs. We implemented optimized logic to compute
both operations at once using LUT_6_2 components.

4.7. Implementing the iteration function. Our goals are high throughput
with low overhead. Therefore, we implement the main part of the iteration func-
tion with fully pipelined, unrolled code. All components are busy all the time:
the design computes one step of the random walk in each cycle while working
on many independent random walks in parallel in a pipelined fashion.

However, using this approach for finite-field inversion as well would require
a large amount of resources. The iteration function requires two multiplications,
one inversion, and various additions and squarings. The inversion itself requires
8 multiplications, thus demanding more than 80% of the total resources. We do
better by using Montgomery’s trick for inversion, combining n inversions into
3(n− 1) multiplications and just 1 inversion.

We use a dual-buffer design to implement a pipelined version of the Mont-
gomery inversion. The buffers are used as follows:

1. Fill buffer 1 with data, using one multiplier to compute the overall product
of the buffer.

2. Invert the product of buffer 1 while filling buffer 2. The size of the buffers
must be large enough to hide the latency of one inversion.

3. Once the inverse of the first product has been computed, empty buffer 1
in reverse order by computing the individual inverses using two multipliers

Faster elliptic-curve discrete logarithms on FPGAs 17

step 0

st
ep

1step
2

batch inv 0

bat

ch
in

v
1

b
a
tch

inv
2

inv

IO

host

Fig. 4.5: Overall layout of the design with one single inverter (inv) and three
unrolled iteration functions (step 1-3) using Montgomery’s trick for inversion
(batch inv 1-3).

while at the same time filling buffer 1 again using the just emptied slots. At
the same time, invert the overall product of buffer 2.

4. Continue iteratively by filling buffer 1 and buffer 2 periodically, alternating
in ascending and descending order.

Given a sufficient amount of buffer memory, the latency of the actual in-
version within the Montgomery inversion does not matter. Therefore, we imple-
mented the inversion not as unrolled code, but as an application specific instruc-
tion set processor (ASIP) with a custom-made instruction set and one single
finite-field multiplier. This results in a lower area consumption than when using
an unrolled core for the price of a higher overall latency and lower utilization of
the logic for the finite-field operations within the inverter.

We do even better by sharing one inverter between several instances of the
iteration function, giving space for more instances. The additional operations
(multiplications in the aggregation and crossmultiplications; logic) for Mont-
gomery’s trick are simply implemented on the inversion core without cost for
further multipliers. This increases the overall latency of the inversion, but as
explained above we use buffering to hide this latency.

To simplify development and to increase flexibility, we wrote tools that au-
tomatically generate unrolled code (for the iteration function) and an ASIP (for
the inversion) from Sage code. Therefore, the logic of the iteration function can
easily be tested using Sage and also easily be altered at any time. For each of
our target curves, we are able to put three instances of the iteration function
on one Spartan-6 XC6SLX150 FPGA, whereas using separate inverters for each
core (as in [15]) would allow at best two instances.

18 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

F2113 F2127

Module Inst.
Mult. per
instance

LUTs per
instance

LUTs
total

FPGA
util.

LUTs per
instance

LUTs
total

FPGA
util.

3 cores with inv. 57,956 63% 68,376 74%
iteration func. 3 2 7,789 23,368 25% 9,123 27,369 30%
F2113 inv. 1 1 5,817 5,817 6% 7,151 7,151 8%
batching 3 3 9,535 28,605 31% 11,397 34,191 37%

F2113 mult. 16 3,071 49,131 53% 3,620 57,927 64%

total (incl. IO) 63,388 69% 72,919 79%

Fig. 4.6: Area consumption by component. All values are post placement.

4.8. Overall architecture. To streamline the design, we arrange the instances
of the iteration function in a circle: the output of one instance is the input for
the next one. Therefore, the design requires only one single IO point. Figure 4.5
shows the overall layout of our design.

The host computer randomly computes starting points of independent ran-
dom walks using a 64-bit seed. During computation of the random walks on
the FPGAs, the seeds are stored on the host computer; only a 12-bit temporal
ID is sent to the FPGAs along with the point coordinates in order to associate
random walks with their seeds.

Each IO instance stores incoming data in a buffer. If there is an empty
slot in the pipeline (either during setup phase in the beginning or because a
distinguished point has been returned to the host computer), the IO interface
sets up the state of a new random walk using a fresh starting point and its 12-bit
ID and puts it into the pipeline. Every clock cycle, the pipeline feeds a state into
the first instance of the iteration function (step 0) which computes one step of
the random walk. During the inversion, the state data of the random walk is
stored in a buffer (batch inv 0). Once the first iteration step is computed, the
pipeline forwards the state to the next instance of the iteration function (step
1). The state circles through the instances, step by step computing a random
walk, until a distinguished point is reached.

Now, the distinguished point is forwarded back to the IO interface. Random-
walk computations are still performed on the state on the way through the
instances, but the state is not updated anymore (see lines 13 and 14 in Fig-
ure 4.1). Once a state with a distinguished point arrives at the IO interface, the
interface returns the x-coordinate and the ID of the distinguished point to the
host and fills the pipeline slot using a fresh input point. The host associates the
original 64-bit seed with the distinguished point using the 12-bit ID and sends
the seed and the x-coordinate to the server which sorts incoming points, detects
collisions, and finally computes the discrete logarithm.

Table 4.6 shows the area demand of the design for the different components
for both fields.

The final 3-core design routes for and runs at 100MHz for both finite-field
implementations. For the F2113 case, we also tested a design with 4 iteration

Faster elliptic-curve discrete logarithms on FPGAs 19

cores on one XC6SLX150 FPGA. However, the power consumption of the design
was too high and the design did not run stably, producing incorrect results.
Furthermore, we tried to increase the frequency of the design by introducing
additional pipelining steps and using different routing strategies. We were able
to place and route and also run a single-core design at up to 160MHz; however,
our attempts to increase the frequency of the 3-core design failed to produce
stable, operational designs, because the power consumption at these frequencies
was too high.

For testing our designs we used Spartan-6 development boards from Sci-
Engines and from Opal Kelly. For running the attacks, we used two “Rivyera”
FPGA-cluster computers from SciEngines with 64 Spartan-6 FPGAs each. A
Rivyera is a classical “host” computer combined with to up to 128 FPGAs (in
the high-density version up to 256 FPGAs). The FPGAs are connected to the
host computer using a PCIe host interface. SciEngines provides an API for pro-
gramming the FPGAs and for communication between the FPGAs and between
FPGAs and the host computer.

4.9. Solving DLPs. We solved a 112-bit DLP on the sect113r2 curve with an
earlier 2-core, 100MHz design within about 48.1 days using up to 120 Spartan-
6 FPGAs. (Not all FPGAs were available for our computations all the time.)
The solution involved the computation of 82,177,699 distinguished points. The
expected duration was 30.8 days for the computation of

√
π · 2112/4/230 ≈

59,473,682 distinguished points.
We are currently doing computations for solving a 117.35-bit DLP on the

elliptic curve target117 over F2127 . We are using the same property for distin-
guished points as for our sect113r2 computations, namely the top 30 bits from the
x-coordinate being zero. Therefore, we expect to require

√
π · 2117.35/4/230 ≈

379,821,956 distinguished points for solving the DLP. Using all 128 FPGAs of
our cluster, we expect the computation to be finished after about 123 days.

4.10. Power consumption. We measured the power consumption of our de-
signs in the following way: One of our Rivyera FPGA clusters with 64 FPGAs
requires about 215W when the FPGAs are not programmed. Under full usage,
while our F2113 design is running, the total power demand is about 725W. Thus,
64 FPGAs require about 510W while running the F2113 design; a single FPGA
requires about 8W. For the F2127 design the total power consumption is 755W.
Therefore, 64 FPGAs require about 540W, a single FPGA about 8.4W.

5 Experiments

The obvious way to verify the performance and functionality of our implemen-
tation is to repeat the following procedure many times: generate a random point
Q on the curve sect113r2, use the implementation to find k such that Q = kP ,
see how long this takes, and check that in fact Q = kP .

The reason for repeating this procedure many times is that the performance
is a random variable. Checking the performance of a single DL computation

20 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

would obviously be inadequate as a verification tool. For example, if the claimed
average DL time is T while the observed time of a single DL computation is
2.3T , then it could be that this particular computation was moderately unlucky,
or it could be that the claim was highly inaccurate.

There are two reasons that more efficient verification procedures are impor-
tant. First, it was feasible for us to carry out a sect113r2 DL computation, but
performing many such computations would have been quite expensive. Second,
and more importantly, verification is not merely something to carry out in retro-
spect: it provides essential feedback during the exploration of the design space.
Below we describe the verification steps that we took for our final implemen-
tation, but there were also many rounds of similar verification steps for earlier
versions of the implementation.

Running hundreds or thousands of walks (a tiny fraction of a complete
sect113r2 DL computation; recall that we expect orders of magnitude more dis-
tinguished points for our selected parameters) produces reasonably robust statis-
tics regarding the number of iterations required to find a distinguished point,
and regarding the time used for each iteration. However, it does not provide any
evidence regarding the number of distinguished points required to compute a
DL. A recurring theme of several recent papers is that standard heuristics over-
estimate the randomness of DL walks, and thus underestimate the number of
distinguished points required; see, e.g., the correction factors in [1, Appendix B]
and the further correction factors in [5, Section 4].

To efficiently verify performance including walk randomness and successful
DL computation, we adapt the following observation from Bernstein, Lange, and
Schwabe [6]. The fastest available ECDL algorithms use the fastest available
formulas for adding affine points, and those formulas are independent of some
of the curve coefficients: specifically, [6] used formulas that are independent of b
in y2 = x3− 3x+ b, and we use formulas that are independent of b in y2 + xy =
x3 + ax2 + b. The same algorithms thus work without change for points (and
precomputed tables) on other curves obtained by varying b. Searching many
curves finds curves with different sizes of prime-order subgroups, allowing tests
of exactly the same ECDL algorithms at different scales.

For example, applying an isomorphism to sect113r2 to obtain a = 1 as de-
scribed earlier, and then changing b to 10010111, produces a curve with a sub-
group of prime order 1862589870449786557 ≈ 260.69. This group is large enough
to carry out reasonably large experiments without distractions such as frequent
self-colliding walks, and at the same time small enough for experiments to com-
plete quickly.

We performed 1024 DL computations on this curve, in each case using 20
bits to define distinguished points. These computations used a total of 1201100
walks. The average number of walks per DL was slightly over 1173. For compar-
ison, the predicted average is

√
π`/4/220 ≈ 1153 for ` = 1862589870449786557,

and the predicted standard deviation is on the same scale as the predicted aver-
age; the gap between 1173 and 1153 is unsurprising for 1024 experiments. Each
computation successfully produced a verified discrete logarithm.

Faster elliptic-curve discrete logarithms on FPGAs 21

0 128 256 384 512 640 768 896 1,024
0

1

2

3

experiment

n
u
m

b
er

o
f

d
is

t.
p

o
in

ts
d
iv

id
ed

b
y
√ π`

/
4
/
2
2
0

F2113 (order 260.69)

F2127 (order 261.93)

theoretical prediction

Fig. 5.1: Blue curve: 1024 independent experiments for F2113 . The experiments
are sorted by the number of distinguished points they required to find a discrete
logarithm, and are then placed at x = 0, x = 1, . . . , x = 1023 respectively. The
y-axis is the number of distinguished points divided by

√
π`/4/220. Dotted red

curve: 1024 independent experiments for F2127 , organized the same way. Dashed
black curve: y =

√
−(4/π) log(1− x/1024) from standard rho theory. This curve

shows that our experiments are close to the expected distribution.

We defined the first DL computation to use seed 0, 1, 2, . . . until finding a
collision between seed s and a previous seed; the second DL computation to use
seeds s + 1, s + 2, . . . until finding a collision within those seeds; etc. We post-
processed seeds with AES before multiplying them by Q, so (if AES is strong)
choosing consecutive seeds is indistinguishable from choosing independent uni-
form random 128-bit scalars.

The advantage of choosing consecutive seeds is that, without knowing in ad-
vance which seeds would be used in each computation, we simply provided a
large enough batch of seeds 0, 1, 2, . . . to our FPGAs. Retroactively attaching
each seed to the correct computation was a simple matter of sorting the result-
ing distinguished points in order of seeds and then scanning for collisions. The
sorting step here is important: if we had scanned for collisions using the order of
points output by the FPGAs then we would have incorrectly biased the initial
computations towards short walks.

We performed the same experiment on a curve over F2127 with a subgroup of
order `2 = 4389832188282442501 ≈ 261.93. In this case 1024 DL computations
required 1,792,905 distinguished points. The average number of distinguished
points per DL was 1751. The predicted average is

√
π`2/4/2

20 ≈ 1771. Figure 5.1
shows the number of required distinguished points divided by the predicted
average for both experiments. The experiments have been ordered by the number
of required distinguished points.

22 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

We also carried out various experiments over F2113 with

– a group of size 2149433571795004101539 ≈ 270.86 with b = 110,
– a group of size 2608103394926752635062767 ≈ 281.11 with b = 100111, and
– a group of size 1534122330555159121115288777 ≈ 290.31 with b = 10000111.

We spot-checked walks against a separate software implementation, verified cor-
rectness of 16 DL computations for the 70-bit group, and verified correctness of
1 DL computation for the 80-bit group.

6 Comparison

Section 1 summarized how our results improve upon the recent results [32] from
Wenger and Wolfger. This section compares the results and techniques of our
113-bit implementation with theirs in more detail.

6.1. Multiplier area. A few different multiplier structures are considered in [32,
Section 6.8 and Appendix B]. The best results, 3757 LUTs, rely on traditional
power-of-2 Karatsuba multipliers, for example building a 64-bit multiplier from
three 32-bit multipliers. We do much better, 3071 LUTs, by exploring a much
wider range of optimizations: in particular, we drop the power-of-2 restriction,
allowing efficient use of three Karatsuba levels, and we optimize the low-level
usage of LUTs. These optimizations should also be useful for constructive appli-
cations.

6.2. Number of multipliers. The design in [32] applies an inverter to a batch
of inputs, where each core provides one input from its first walk; then applies
the same inverter to another batch of inputs, where each core provides one
input from its second walk; etc. This means that the batch size is very small
even on the bigger FPGA and would become ridiculous (size two) if mapped to
our FPGA. This requires a high-throughput inverter: [32] uses a fully unrolled
inverter, requiring 8 multipliers and 112 squarers.

We instead use a dual-buffer memory to batch inversions across cores and
across many random walks from each core. This lets us use a high-latency inverter
without slowing down the rest of the design. This, in turn, allows us to use a
low-area ASIP design for the inverter, requiring only one multiplier and one
module each to compute a2, a2

2

, a2
4

, and a2
8

.
A slight disadvantage is that for c cores we need 3c multipliers to batch

inversions, whereas in [32] one core can skip 3 of these multipliers, for a total of
just 3c − 3 multipliers to batch inversions. Furthermore, to simplify routing we
synthesized 5-core, 6-core, 7-core, and 8-core designs as two separate clusters,
with a separate inverter in each cluster. However, overall we still save the area
for 3 multipliers in ≤8-core designs, or 4 multipliers in ≤4-core designs.

6.3. Total area. All in all, our improvements and optimizations reduce the
area cost significantly compared to [32]. As noted in Section 1, we do not have
access to any Kintex-7 FPGAs for testing, but for comparability we nevertheless

Faster elliptic-curve discrete logarithms on FPGAs 23

cores LUTs registers RAMs slices source

5 73% 41% 31% 80% [32]
6 62% 28% 15% 84% new
7 71% 33% 17% 91% new
8 80% 37% 19% 96% new

Fig. 6.1: Resource utilization of several ECDL designs synthesized for the
XC7K325T-2 at 180MHz.

synthesized our design for the XC7K325T-2 used in the KC705 development
boards in [32]. Table 6.1 shows that our 7-core design uses fewer LUTs, fewer
registers, and fewer block RAMs than the 5-core design in [32]; it uses more
slices but we expect it to run stably at the same 180MHz. We assume that [32]
synthesized the design for larger frequencies (resulting in a closer placement and
thus requiring fewer slices) and later experimentally tried out the maximum
frequency delivering stable results. Note that overheating is the main bottleneck
identified in [32], and heat is generated primarily by computation and memory
access, not by chip area per se. With access to this FPGA we could verify stability
for 7 or 8 cores and possibly fine-tune the design to allow higher frequencies.

6.4. Fruitless cycles. A further advantage of our design is that we waste fewer
iterations on fruitless cycles. Specifically, we use doublings to escape fruitless
cycles, while [32] uses additions. The detailed analysis in [9] indicates that addi-
tions create new types of fruitless cycles, whereas doublings avoid this problem.

[32, p. 4] argues that using additions to escape fruitless cycles has “a huge
advantage when a hardware design is done” since “no on-chip point doubling
circuit is necessary”. However, in our unrolled design, the doubling circuit reuses
the addition circuit with miniscule additional area cost.

We performed many experiments to check that our iteration function is cor-
rectly computed by our implementation and that it is as effective as expected,
gaining a factor

√
2 in the average observed number of iterations compared to

not using the negation map; see Section 5. The small-scale negation-map exper-
iments reported in [32, Table 2] show a speedup factor only 1.32, i.e., 6% worse
than

√
2. This gap is consistent with the analysis in [9].

[32, Table 2, “Point doubling” entry] reports doubling experiments that were
also 6% worse than

√
2. This is inconsistent with the analysis and experiments

in [9] (and with our own experiments); [32] does not discuss this inconsistency.
Presumably the “Point doubling” experiment in [32] actually used a slightly
different cycle-escape method from what we call doubling, but no further details
are provided in [32].

6.5. Target curves. [32] illustrates its techniques by attacking the SECG
curve sect113r1, while we illustrate our techniques by attacking the SECG curve

24 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

sect113r2 and our new curve target117. The prime orders are

5192296858534827689835882578830703 ≈ 2112.00000000000000001703

5192296858534827702972497909952403 ≈ 2112.00000000000000002068

212146114040485326348618959071598183 ≈ 2117.35254157354507970215

respectively. The sect113r1 group size was summarized as “2112” in [32] but as
“bit size 113” in [17]. Note that rounding the exponent to the nearest integer also
produces 112 for the earlier ECDL record in [7], whereas rounding the exponent
up creates a large separation (41% difference in estimated attack cost) between
practically identical orders marginally above and below a power of 2. We suggest
instead rounding to two digits after the decimal point in the exponent: 2111.78 for
[7], 2112.00 for [32], 2112.00 for sect113r2 in this paper, and 2117.35 for target117
in this paper.

6.6. Generality and novelty of results. In summary, [32] implements only
one curve and extrapolates to larger sizes, while we implemented two different
field sizes and performed many more DL computations.

We have designed a considerably smaller multiplier and an iteration function
that consumes significantly fewer LUTs. The design from [32] cannot run on our
FPGAs and quick adjustments are not possible because of their huge inverter.

Reasons for the size difference are our improvements in

– Designing a smaller multiplier, using more levels of Karatsuba and no power-
of-2 restriction.

– Designing a low area inverter with bigger batch size and a different way to
batch across iterations.

– A new definition of |P |, saving n− 1 bit comparisons.
– Rather than computing coefficients in every walk, compute coefficients only

for the two colliding walks (negligible cost at the end of the DL). This saves
all circuitry for computations mod l.

– A new way of checking for cycles, reducing cost to one field element and a
4-bit counter.

– Integrating the doubling circuitry with the general addition circuitry, remov-
ing the overhead for dealing with fruitless cycles.

Furthermore we use doublings to escape fruitless cycles, so that we decrease
the overhead and avoid using the bottom bit in deciding the next step.

References

1. D. V. Bailey, L. Batina, D. J. Bernstein, P. Birkner, J. W. Bos, H.-C. Chen, C.-
M. Cheng, G. V. Damme, G. de Meulenaer, L. J. D. Perez, J. Fan, T. Güneysu,
F. Gürkaynak, T. Kleinjung, T. Lange, N. Mentens, R. Niederhagen, C. Paar,
F. Regazzoni, P. Schwabe, L. Uhsadel, A. V. Herrewege, and B.-Y. Yang. Breaking
ECC2K-130. Cryptology ePrint Archive, Report 2009/514, 2009. https://eprint.
iacr.org/2009/541/. 2, 10, 20

https://eprint.iacr.org/2009/541/
https://eprint.iacr.org/2009/541/

Faster elliptic-curve discrete logarithms on FPGAs 25

2. D. J. Bernstein. Newton’s identities without factorization, 1997. https://cr.yp.to/
papers/newton.pdf. 9

3. D. J. Bernstein, H. Chen, C. Cheng, T. Lange, R. Niederhagen, P. Schwabe, and
B. Yang. ECC2K-130 on NVIDIA GPUs. In G. Gong and K. C. Gupta, editors,
Progress in Cryptology - INDOCRYPT 2010, volume 6498 of Lecture Notes in
Computer Science, pages 328–346. Springer, 2010. https://cr.yp.to/papers.html#
ecc2k130. 2

4. D. J. Bernstein and T. Lange. Computing small discrete logarithms faster. In S. D.
Galbraith and M. Nandi, editors, Progress in Cryptology - INDOCRYPT 2012: 13th
International Conference in Cryptology in India, volume 7668 of Lecture Notes
in Computer Science, pages 317–338, Kolkata, India, Dec. 9–12, 2012. Springer,
Heidelberg, Germany. https://eprint.iacr.org/2012/458. 5

5. D. J. Bernstein and T. Lange. Two grumpy giants and a baby. In E. W. Howe
and K. S. Kedlaya, editors, ANTS X: proceedings of the tenth algorithmic number
theory symposium, pages 87–111. Mathematical Sciences Publishers, 2013. https:
//eprint.iacr.org/2012/294. 20

6. D. J. Bernstein, T. Lange, and P. Schwabe. On the correct use of the negation map
in the Pollard rho method. In D. Catalano, N. Fazio, R. Gennaro, and A. Nicolosi,
editors, Public Key Cryptography – PKC 2011, volume 6571 of LNCS, pages 128–
146. Springer, 2011. https://cryptojedi.org/papers/#negation. 10, 11, 20

7. J. W. Bos, M. E. Kaihara, T. Kleinjung, A. K. Lenstra, and P. L. Montgomery.
Playstation 3 computing breaks 260 barrier; 112-bit prime ECDLP solved, 2009.
http://lacal.ep�.ch/112bit_prime. 2, 10, 24

8. J. W. Bos, M. E. Kaihara, and P. L. Montgomery. Pollard rho on the PlayStation 3.
In Workshop Record of SHARCS’09: Special-purpose Hardware for Attacking Cryp-
tographic Systems, pages 35–50, 2009. https://hyperelliptic.org/tanja/SHARCS/
record2.pdf. 2, 10

9. J. W. Bos, T. Kleinjung, and A. K. Lenstra. On the use of the negation map
in the Pollard rho method. In G. Hanrot, F. Morain, and E. Thomé, editors,
Algebraic Number Theory, volume 6197 of LNCS, pages 66–82. Springer, 2010.
http://www.joppebos.com/�les/negation.pdf. 11, 23

10. Certicom Research. SEC 2: Recommended elliptic curve domain parameters, ver-
sion 1.0, 2000. http://www.secg.org/SEC2-Ver-1.0.pdf. 4

11. Certicom Research. SEC 2: Recommended elliptic curve domain parameters, ver-
sion 2.0, 2010. http://www.secg.org/sec2-v2.pdf. 4

12. I. M. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log com-
putation on curves with automorphisms. In K. Lam, E. Okamoto, and C. Xing,
editors, Advances in Cryptology - ASIACRYPT ’99, International Conference on
the Theory and Applications of Cryptology and Information Security, Singapore,
November 14-18, 1999, Proceedings, volume 1716 of Lecture Notes in Computer
Science, pages 103–121. Springer, 1999. 27, 28, 29

13. ECC Brainpool. ECC Brainpool standard curves and curve generation, 2005.
http://www.ecc-brainpool.org/download/Domain-parameters.pdf. 6

14. S. Engels. Breaking ecc2-113: Efficient implementation of an optimized attack
on a reconfigurable hardware cluster, 2014. http://www.emsec.rub.de/media/
attachments/�les/2014/11/MA_Engels.pdf. 2

15. J. Fan, D. V. Bailey, L. Batina, T. Güneysu, C. Paar, and I. Verbauwhede. Break-
ing elliptic curve cryptosystems using reconfigurable hardware. In International
Conference on Field Programmable Logic and Applications, FPL 2010, pages 133–
138. IEEE, 2010. https://www.cs.ru.nl/~lejla/FPL2010.pdf. 2, 17

https://cr.yp.to/papers/newton.pdf
https://cr.yp.to/papers/newton.pdf
https://cr.yp.to/papers.html#ecc2k130
https://cr.yp.to/papers.html#ecc2k130
https://eprint.iacr.org/2012/458
https://eprint.iacr.org/2012/294
https://eprint.iacr.org/2012/294
https://cryptojedi.org/papers/#negation
http://lacal.epfl.ch/112bit_prime
https://hyperelliptic.org/tanja/SHARCS/record2.pdf
https://hyperelliptic.org/tanja/SHARCS/record2.pdf
http://www.joppebos.com/files/negation.pdf
http://www.secg.org/SEC2-Ver-1.0.pdf
http://www.secg.org/sec2-v2.pdf
http://www.ecc-brainpool.org/download/Domain-parameters.pdf
http://www.emsec.rub.de/media/attachments/files/2014/11/MA_Engels.pdf
http://www.emsec.rub.de/media/attachments/files/2014/11/MA_Engels.pdf
https://www.cs.ru.nl/~lejla/FPL2010.pdf

26 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

16. A. Flammenkamp. Shortest addition chains, 2008. http://wwwhomes.uni-bielefeld.
de/achim/addition_chain.html. 14

17. S. D. Galbraith and P. Gaudry. Recent progress on the elliptic curve discrete
logarithm problem. Des. Codes Cryptography, 78(1):51–72, 2016. https://eprint.
iacr.org/2015/1022. 6, 24

18. R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Improving the parallelized
Pollard lambda search on anomalous binary curves. Mathematics of Computation,
69(232):1699–1705, 2000. 6

19. R. J. Harley. Solution to Certicom’s ECC2K-95 problem (email message), 1998.
http://cristal.inria.fr/~harley/ecdl5/ECC2K-95.submission.text. 10

20. Y. Hitchcock, P. Montague, G. Carter, and E. Dawson. The security of fixed versus
random elliptic curves in cryptography. In R. Safavi-Naini and J. Seberry, editors,
ACISP 03: 8th Australasian Conference on Information Security and Privacy, vol-
ume 2727 of Lecture Notes in Computer Science, pages 55–66, Wollongong, NSW,
Australia, July 9–11, 2003. Springer, Heidelberg, Germany. 5

21. F. Kuhn and R. Struik. Random walks revisited: Extensions of Pollard’s rho
algorithm for computing multiple discrete logarithms. In S. Vaudenay and A. M.
Youssef, editors, SAC 2001: 8th Annual International Workshop on Selected Areas
in Cryptography, volume 2259 of Lecture Notes in Computer Science, pages 212–
229, Toronto, Ontario, Canada, Aug. 16–17, 2001. Springer, Heidelberg, Germany.
http://grouper.ieee.org/groups/802/PrivRecsg/email/pdfJ3n8ucpxL8.pdf. 5

22. National Institute for Standards and Technology (NIST). Recommended elliptic
curves for Federal government use, 1999. http://csrc.nist.gov/groups/ST/toolkit/
documents/dss/NISTReCur.pdf. 5

23. National Institute for Standards and Technology (NIST). Digital signature stan-
dard (DSS) FIPS 186–4, 2013. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.186-4.pdf. 5

24. National Security Agency. Suite B cryptography / cryptographic interoperability,
2005. http://www.nsa.gov/ia/programs/suiteb_cryptography/. 6

25. T. Oliveira, J. López, D. F. Aranha, and F. Rodŕıguez-Henŕıquez. Lambda coor-
dinates for binary elliptic curves. In G. Bertoni and J.-S. Coron, editors, CHES,
volume 8086 of LNCS, pages 311–330. Springer, 2013. https://eprint.iacr.org/
2013/131. 6

26. J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathemat-
ics of Computation, 32(143):918–924, 1978. http://www.ams.org/journals/mcom/
1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf. 9

27. G. Seroussi. Compact representation of elliptic curve points over F2n . HP Labs
Technical Reports, HPL-98-94R1, 1998. http://www.hpl.hp.com/techreports/98/
HPL-98-94R1.html. 9

28. N. J. A. Sloane. The on-line encyclopedia of integer sequences, 2016. https://oeis.
org. 29

29. E. Teske. On random walks for Pollard’s rho method. Mathematics of Compu-
tation, 70(234):809–825, 2001. http://www.ams.org/journals/mcom/2001-70-234/
S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf. 10

30. P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic
applications. Journal of Cryptology, 12(1):1–28, 1999. http://www.scs.carleton.
ca/~paulv/papers/JoC97.pdf. 9

31. E. Wenger and P. Wolfger. Solving the discrete logarithm of a 113-bit Koblitz
curve with an FPGA cluster. In A. Joux and A. Youssef, editors, Selected Areas in
Cryptography – SAC 2014, volume 8781 of LNCS, pages 363–379. Springer, 2014.
https://eprint.iacr.org/2014/368. 2, 10

http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html
https://eprint.iacr.org/2015/1022
https://eprint.iacr.org/2015/1022
http://cristal.inria.fr/~harley/ecdl5/ECC2K-95.submission.text
http://grouper.ieee.org/groups/802/PrivRecsg/email/pdfJ3n8ucpxL8.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
http://www.nsa.gov/ia/programs/suiteb_cryptography/
https://eprint.iacr.org/2013/131
https://eprint.iacr.org/2013/131
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.ams.org/journals/mcom/1978-32-143/S0025-5718-1978-0491431-9/S0025-5718-1978-0491431-9.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-94R1.html
http://www.hpl.hp.com/techreports/98/HPL-98-94R1.html
https://oeis.org
https://oeis.org
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://www.ams.org/journals/mcom/2001-70-234/S0025-5718-00-01213-8/S0025-5718-00-01213-8.pdf
http://www.scs.carleton.ca/~paulv/papers/JoC97.pdf
http://www.scs.carleton.ca/~paulv/papers/JoC97.pdf
https://eprint.iacr.org/2014/368

Faster elliptic-curve discrete logarithms on FPGAs 27

32. E. Wenger and P. Wolfger. Harder, better, faster, stronger: elliptic curve discrete
logarithm computations on FPGAs. Journal of Cryptographic Engineering, pages
1–11, 2015. https://eprint.iacr.org/2015/143. 2, 3, 4, 5, 10, 11, 22, 23, 24

33. M. J. Wiener and R. J. Zuccherato. Faster attacks on elliptic curve cryptosys-
tems. In S. E. Tavares and H. Meijer, editors, Selected Areas in Cryptography
’98, SAC’98, Kingston, Ontario, Canada, August 17-18, 1998, Proceedings, vol-
ume 1556 of Lecture Notes in Computer Science, pages 190–200. Springer, 1998.
6

A Parameter for transforming the curve

t = w112 +w111 +w108 +w107 +w106 +w104 +w101 +w96 +w95 +w91 +w89 +
w88 +w87 +w86 +w83 +w82 +w81 +w80 +w78 +w75 +w74 +w67 +w64 +w63 +
w62 +w61 +w60 +w58 +w57 +w53 +w50 +w49 +w46 +w43 +w42 +w41 +w39 +
w37 +w36 +w33 +w32 +w31 +w30 +w28 +w26 +w24 +w23 +w19 +w17 +w15 +
w14 + w13 + w11 + w10 + w9 + w7 + w5 + w4 + w3 + w2

Hexadecimal representation of t: 0x19D218BCF4C09F6264EB3D58AEEBC.

B Probabilities of fruitless cycles

The following model of fruitless cycles is implicit in [12, Proposition 3.1]. Let
T0, . . . , Tn−1 be basis vectors of an n-dimensional lattice. For each lattice point R
choose an independent uniform random h(R) ∈ {T0, . . . , Tn−1,−T0, . . . ,−Tn−1}.
Starting from a lattice point R0, define R1 = R0 +h(R0), R2 = R1 +h(R1), etc.

Evidently R2 = R0 if and only if h(R1) = −h(R0). This fruitless 2-cycle
occurs with probability exactly δ/2 where δ = 1/n.

Even if all 2-cycles are caught and eliminated, larger cycles can occur. For
example, for any n ≥ 2, one can have a fruitless 4-cycle R4 = R0 with distinct
R0, R1, R2, R3. This occurs if, e.g., h(R0) = T0, h(R1) = T1, h(R2) = −T0, and
h(R3) = −T1.

It is often stated that larger cycle lengths occur less frequently. Specifically,
[12] shows for each t ∈ {2, 4, 6, 8, . . .} that a cycle of length exactly t starting from
R0 occurs with probability O(δt/2). However, the constant implicit in O increases
quite rapidly with t. For example, taking n = 1024 (as in our computation) and
t = 16 means that δ = 2−10 and δt/2 = 2−80, but the bound in [12] is much larger,
approximately 2−40. If this bound is tight then fruitless cycles are a problem for
us: even if we detect and eliminate all cycle lengths smaller than 16, we would
expect 16-cycles to appear approximately once every 240 steps.

Fortunately, the bound is far from tight. We have, with computer assistance,
computed the exact probabilities of fruitless t-cycles in this model for several
small values of t, and checked several of these formulas against the results of a

https://eprint.iacr.org/2015/143

28 Bernstein, Engels, Lange, Niederhagen, Paar, Schwabe, Zimmermann

comprehensive simulation for n = 10:

t probability

2 1
2δ

4 1
4δ

2 − 1
4δ

3

6 1
2δ

3 − 21
16δ

4 + 13
16δ

5

8 27
16δ

4 − 131
16 δ

5 + 415
32 δ

6 − 207
32 δ

7

10 31
4 δ

5 − 3755
64 δ6 + 10615

64 δ7 − 25965
128 δ8 + 11253

128 δ9

12 1415
32 δ6 − 60795

128 δ7 + 524985
256 δ8 − 2242229

512 δ9 + 2322943
512 δ10 − 14221

8 δ11

14 4779
16

δ7− 274463
64

δ8+ 6638303
256

δ9− 42763903
512

δ10+ 305264211
2048

δ11− 35158655
256

δ12+ 102125321
2048

δ13

Fix t. We compute the probability for t as follows, generalizing the obvious
t = 2 computation, and generalizing the t = 4 computation that appeared in
[12, Proposition 3.1, case “j1 = j3, j2 = j4”].

Consider t-step self-avoiding closed paths in Zk starting at (0, 0, . . . , 0), where
each step is adding or subtracting 1 in a single coordinate. “Closed” means that
the path ends at its starting point. “Self-avoiding” means that the only collision
in the path is the collision of the starting point and the ending point.

Define pk as the number of such paths that use all k coordinates. Note that
each of the k coordinates must be used in at least two steps, so pk = 0 if
k > t/2. Observe that pk = k!ck, where ck counts these paths with the extra
restriction of using the k coordinates in order: the path does not use the second
coordinate until after using the first coordinate; the path does not use the third
coordinate until after using the second coordinate; etc. We computed ck for all k
simultaneously by a standard pruned combinatorial search. Note, however, that
there are faster algorithms, at least for k = t/2 (see the ar formula below).

The number of sequences (h(R0), h(R1), . . . , h(Rt−1)) producing a cycle of
length exactly t is(

n

t/2

)
pt/2 + · · ·+

(
n

3

)
p3 +

(
n

2

)
p2 +

(
n

1

)
p1.

Indeed, for each sequence, consider the set S of indices i for which ±Ti appears
in the sequence, and write k for the size of S. Map these Ti, in increasing order
of i, to the k basis vectors of Zk, obtaining a t-step path in Zk that starts at
(0, 0, . . . , 0) and that uses all k coordinates. Saying that Rt = R0 is equivalent
to saying that the path ends at (0, 0, . . . , 0), and saying that there is no earlier
cycle is equivalent to saying that the path is self-avoiding. Conversely, each such
path corresponds to exactly

(
n
k

)
sequences, where

(
n
k

)
accounts for the number

of choices of S for this path.
Dividing the above number by (2n)t gives the probability of a cycle of length

exactly t. This probability has the form (ct/2/2
t)δt/2+· · ·+(· · ·)δt−1. This whole

computation treats n as a polynomial variable.
The leading coefficient ct/2/2

t has been studied before. (We say “leading”
here since δ < 1 and thus the smallest exponent of δ dominates the probability

Faster elliptic-curve discrete logarithms on FPGAs 29

for large n.) Specifically, define a1 = 1 and ar = (r − 1)
∑r−1

k=1 akar−k for r ≥
2; then ar is the number of (strongly) “irreducible diagrams with 2r nodes”,
sequence A000699 in the On-line Encyclopedia of Integer Sequences [28], and
ct/2 = 2t/2at/2. As t grows, the leading coefficient ct/2/2

t = at/2/2
t/2 grows

much more slowly than the upper bound in [12].
The coefficient c2 has also been studied before: p2 = 2c2 is the number

of “t-step 2-dimensional closed self-avoiding paths on square lattice”, sequence
A010566. We are not aware of literature on the intermediate coefficients.

	Faster elliptic-curve discrete logarithmson FPGAs

